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Abstract. Twig pattern matching problem has been widely studied in recent
years. Give arxML tree7. A twig-pattern matching queryy, represented as

a query tree, is to find all the occurrences of such twig patterfi.ifPrevious
works like HolisticTwig and TJFastiecomposed the twig pattern into single paths
from root to leaves, and merged all the occurrences of such path-patterns to find
the occurrences of the twig-pattern matching quéryTheir techniques can ef-
fectively prune impossible path-patterns to avoid producing a large amount of
intermediate results. But they still need to merge path-patterns which occurs high
computational cost. Recentl§wig® Stackwas proposed to overcome this prob-
lem using hierarchical-stacks to further reduce the merging cost. But, due to the
complex hierarchical-stack&vig® Stackused,Twig? Stackmay end up many ran-

dom accesses in memory, and need to load the wkiale tree into memory in

the worst case. In this paper, we propose a new algorithm, callégl ist, which

uses simple lists. Both time and space complexity of our algorithm are linear with
respect to the total number of pattern occurrences and the sizalofree. In
addition, our algorithm can be easily modified as an external algorithm. We con-
ducted extensive experimental studies using large benchmark and real datasets.
Our algorithm significantly outperforms the up-to-date algorithm.

1 Introduction

The Extensible Markup LanguaggeML ) is an emerging standard for data representa-
tion and exchange on the Internet. Pattern matching is one of the most important types
of XML queries to retrieve information from ammL document. Among many reported
studies, Zhang et al. in [1] introduced the region encoding to prooessqueries and
proposed a multi-predicate merge join algorithm using inverted list. Al-Khalifa et al. in
[2] proposed a stack-based algorithm which breaks the twig query into a set of binary
components. The drawback of the early work is the large intermediate results generated
by the algorithm. Bruno et al. in [3] used a holistic twig join algorithiigStackto

avoid producing large intermediate results. Jiang et al. in [4] proposetarRegion

Tree XR-treg which is a dynamic external memory index structure specially designed
for nestedxML data. WithXR-tree they presented aSGeneric+algorithm to effec-

tively skip both ancestors and descendants that do not participate in a join. Lu et al.
in [5] proposedTwigStackListto better handle twig queries with parent-child relation-
ships. Lu et al. in [6] used a different labeling scheme called extended Dewey, and
proposed arJFastalgorithm to access only leaf elements. However, all of the above
algorithms can not avoid a large number of unnecessary path mergings as theoretically
shown in [7]. Hence, Aghili et al. in [8] proposed a binary labeling algorithm using



2 Lu Qin et al.

the method of nearest common ancestor to reduce search space. However, this tech-
nique is efficient in the cases when the returned nodes are the leaf nodes in the twig
query. Most recently, Chen et al. in [9] proposedisig? Stackalgorithm which uses
hierarchical-stacks instead of enumeration of path matcheg? Stackoutperforms
TwigStackand TJFastBut Twig? Stackmay conduct many random accesses and may
use a large memory space due to the complexity of hierarchical-stacks it uses.

The main contribution of this paper is summarized below. We present a new algo-
rithm, called TwigList, which is independently developed and shares similarity with
Twig? Stack[9]. Our algorithm significantly outperformBwig? Stack The efficiency of
our TwigList algorithm is achieved by using simple lists rather than the hierarchical-
stacks used inMwig? Stackto reduce the computational cost. In addition, because of
the simple list data structure and maximization of possible sequential scans used in
our algorithm, we extendwigList as an external algorithm, which still outperforms
Twig® Stackusing a 582MBXMark benchmark, a 337MBBLP dataset, and a 84MB
TreeBank dataset, as reported in our extensive experimental studies.

The remainder of this paper is organized as follows. Section 2 gives the problem of
processing twig-pattern matching queries. Section 3 discusses two existing algorithms
and outlines their problems. We give our new algorithm in Section 4. Experimental
results are presented in Section 5. Finally, Section 6 concludes the paper.

2 Twig-Pattern Matching Queries

An XML document can be modeled as a rooted, ordered, and node-labeled tree,
where a node represents amL element, and an edge represents a parent/child rela-
tionship between elements kML. For simplicity, in this work, a label of a node is

a value that belongs to a type (tag-name). An example ofnn tree is shown in
Fig. 1 (a). In thexmL tree, a node is associated with a valyavhich belongs to a type

X (denotedr; € X). For example, the root node has a valyehat belongs to typel.

The ordering among sibling nodes specifies a traversal order.

A twig-pattern matching query is a fragment x#ATH queries that can be repre-
sented as a query tre@(V, E). Here,V = {V;, V4, -+, V,, } is a set of nodes repre-
senting types. We lel; denote both theé!” typed query node i) and the set of the
it" typed elements in themL tree7, F is a set of edges. An edge between two typed
nodes, for exampled and D, is either associated with atPATH axis operatoy/ or /
to representd /D or A/D. Given anxmL tree7, the former is to retrieve all and
D typed elements that satisfy the ancestor/descendant relationships, and the latter is to
retrieve allA and D typed elements that satisfy parent/child relationships. We call the
former /-edge and the lattef-edge in short. As a special case, the root node has an
incoming /- or /-edge to represent atPATH query, /A or /A, suppose the root node
is A-typed. The answer of a-node query tree)(V, E), against arxmL tree7, is a
set of alln-ary tuples(vy,va, -+ ,v,) In T, forv; € V; (1 < i < n), that satisfy all
the structural relationships imposed &y Consider arxPATH Q = JA[/C]/B. The
guery tree is illustrated in Fig. 1 (b). Whéhis issued against themL tree (Fig. 1 (a)),
the answer include@:, by, ¢c3) and(as, b3, ¢1).
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Fig. 1. An XML tree (a) and a query treg (b)

In this paper, we focus ourselves on efficient processing twig-pattern matching
queries. For efficiently determining ancestor/descendant relationships among nodes in
anxML tree, a node: is encoded with a triplg(s,, e., d.,), wheres,, ande, together
represent a region (starting/ending position), denetedu), andd,, represents the
level of the node in thexmL tree. (The root is at level 1.) With the region encoding
(starting/ending position), a nodeis an ancestor of a nodeiff the reg(v) C reg(u)
such thats,, < s, < e, < ey, @ nodeu is a parent of a node iff reg(v) C reg(u)
andd, = d, + 1, which implies that the node is one level deeper than node For
example, as shown in Fig. 1 (&), is a descendant af;, because the region 6f, (7,8),
is contained in the region af; (1, 20). Also,b; is not a child ofa; because the levels
for b, anda; are 3 and 1.

3 Two Existing Algorithms: TwigStackAnd Twig? Stack

The twig-pattern matching query was first studied by Bruno, Koudas and Srivastava in
[3]. A TwigStackalgorithm was proposed to process a twig-pattern matching g@ery,

in two steps. In the first step, in brief RathStacklgorithm was proposed to efficiently
process every query path in a given query tree. Consider the query/A[//C]/ B

(Fig. 1 (b)). There are two query pathQ,, = JA/B andQ,, = JA/C. The
PathStackalgorithm finds answers for both of them using stacks. In the second step,
TwigStackchecks if the results for all the query paths can be merged to satisfy the struc-
tural relationships imposed by the given twig-pattern matching queryTw@Stack

the first step can be processed efficiently, but the second step consumes much time
because it needs to process merging.

Below, in brief, we discuss the difficulties fawigStackto reduce computational
cost for merging in the second step after introduditaghStackConsider a query path
inthe query tre€), = /V1 Vs - -- J/V,. Astackis created for every nodig, denoted
stack(V;). The whole query path is processed while traversing the giwen tree 7
following the preorder. When traversingléa-typed nodey; in XML tree7 (v; € V;),
PathStackpops up nodes that are not ancestors,on stack(V;) and stack(V;_1),
because they are no longer needed. TRathStackushes node; into stack(V;), iff
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stack(V;—1) is not empty. Wheny; can be pushed intetack(V;), there is a pointer
from v; pointing to the top element istack(V;_1). Consider processing query path
Qp, = /A B againstxmL tree7 (Fig. 1 (a)). There are two stacksack(A) and
stack(B). Following preorder traversaRathStackpushesa; andas into stack(A).
Whenb;, is traversed, the top element @f in stack(A) is an ancestor of;, sob; is
pushed intatack(B). PathStackvill report (a1, b;) and(az, b1 ) as result for the query
path, because all the other elementstiick(A) are ancestors of the top element. Then,
ag is traversed, anfPathStackvill pop up as before pushings into stack(A), because
as is not an ancestor a@f; and is not needed in the later processing. Similarly, whes
traversedb; is popped up. The merging process ensures the results satisfying the entire
structural relationships. Reconsid@r= /A[/C]/ B (Fig. 1 (b)) againskmL tree7
(Fig. 1 (a)). Here(as, by) satisfiex)),, = /A B, (a1, c2) satisfies),,, = JA/C, but
the two do not jointly satisfy) = JA[/C]/B. The cost of merging is considerably
high as processing joins, if there are: query paths for a twig-pattern matching query.

It is worth noting thatTwigStackcannot allow the same stack, sayuck(A), to
be shared by two query patldg,, = JA/B and@,, = JA/C, and process twig-
pattern matching queries without the merging step. It is because the sibling relationships
cannot be easily maintained in the frameworkTafigStack and the push/popup, that
are designed for each query path, cannot be used to control multiple paths (branches).
Due to the different timing of push/popup, some answer may be missing.

In order to avoid the high cost in the step of merging, Chen et al. in [9] proposed
a Twig? Stackalgorithm which instead uses a hierarchical-stack, denétég-, for
each node, in query tre@, to compactly maintain all twig-patterns for a twig-pattern
matching query.

Consider a query tre@(V, E) with n nodes ¥ = {V1, Vs, -+, V,,}). Twig®Stack
maintainsn hierarchical-stack#/ Sy, for 1 < i < n. EachH Sy, maintains an ordered
sequence of stack-treesl’ (V;), ST>(V;), - - -, and a stack-tre&§T; (V;), is an ordered
tree of stacks. Each stack in the stack-tree contains zero or more document elements.
The ancestor/descendant relationships are maintained by the stacks in the hierarchical-
stacks. Suppose in atML tree,u is an ancestor of. If « andv have the same type,
sayV;, in Twig? Stack they may appear in the same stack. If sovill be pushed into
the stack before is in H.Sy;,. If v andv have different typesy; andV;, thenu will be
in one stack i Sy, andv will be in one stack inff Sy, and there is a pointer from the
stack inH Sy; to the stack inf Sy, to represent their ancestor/descendant relationship.

Take an example of processiay = J/A[/C]/B (Fig. 1 (b)) againskmL treeT
(Fig. 1 (a)). Twig? StacktraversesT in preorderay, as, by, as, by, bs, by, c1, ¢z, and
c3, and will push them into a special stack calléa:path in such order. Initiallyaq,
a, andb; are pushed into the staekcpath in order. WhenTwig? Stackis about to
pushas into docpath, it finds thatb; is not an ancestor afs and therefore pops-up
by from docpath and pushe$; to the hierarchical-stacki Si, and it then finds that
az IS not an ancestor aof; either and therefore simply discards it (becauseoes not
have anyC-typed descendants now, and will not have any later). Wheig? Stackis
about to pushs into docpath after pushingy, into docpath, Twig? Stackfinds thatb,
is notbs’s ancestor, it pops uly from docpath and pushes, into H.Sg. Sincebs is not
an ancestor oby, there will be two single-node stack-treesifSg. Fig. 2 (a) shows
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Fig. 2. Twig® Stackfor the query tree) (Fig. 1 (b)) againskMmL treeT (Fig. 1 (a))

the docpath, the hierarchical-stacks after is pushed intalocpath. Fig. 2 (b) shows
thedocpath, the hierarchical-stack$/.S4 and HSg and H S¢, aftercs is pushed into
docpath. Note: there are two stack-treeskhSg. Fromas in HS 4, there is a pointer
pointing to a subtree i Sz indicating that it is an ancestor 6f, b; andb,; also there

is a pointer taH S¢ indicating thatig is an ancestat; . Fig. 2 (c) shows the hierarchical-
stacks after alkxmL tree nodes are pushed/popped-up into/fidsapath. As can be
seen from Fig. 2 (c), all twig-patterns are maintained by the stacks in the hierarchical-
stacks. After the hierarchical-stacks are constructedy? Stackenumerates the results

in a bottom-top manner. For example, for, Twig? Stackenumerates the stacks, and
conduct Cartesian-product betweenand{b,, bs, b, by} and{cy, c2, c3}.

As shown in [9], Twig? Stackis a linear-time (w.r.t. the number of nodes®J al-
gorithm to construct the hierarchical-stacks, and is a linear-time (w.r.t. the total number
of matchings) enumeration algorithm based on intermediate structures maintained in
the hierarchical-stacks. But there are also some problemigr Stack First, the way
of maintaining ancestor/descendant relationships across the hierarchical-stacks is too
complex, which results in a large number of random memory accesses and therefore
increases the processing time. SecohigStackneeds to maintain a large number of
stacks. In the worst case, it needs to load the wkele tree into memory.

4 A New Algorithm: TwigList

We have developed a new algorithfvigList for processing twig-pattern matching
queries. The main difference between duwigList algorithm andTwig? Stackis that
we do not need to maintain complicated hierarchical-stacks for nodes in a quet. tree
Instead of maintaining a hierarchical-stack for a ndde,in the query treeJwigList
simply maintains a listLy, . The list is used based on the following remark.

Property 1. ConsiderA / B against arxML tree7 . If an A-typed node is an ancestor of
a set of B-typed nodes ixML tree7: (1) It must be able to specify a minimal interval
for the A-typed node to cover all sucB-typed nodes; (2) It must be the case that there
does not exist anyB-typed node in the interval that is not a descendant ofAtgped
node.
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Algorithm 1 TwigList (Q,T)

Input: a query tre&) with n nodes{V1,--- ,V, }, and arxmL treeT;

Output: all n-ary tuples as answers f¢J;

let X; be a sequence &f;-typedxML tree nodes sorted in preorder, for alK ¢ < n;
let X be the set of allX; for1 < ¢ < n;

obtain a set of listd. = {Lv,, Lv,, - - - Lv,, } by calling TwigList-Construc{Q, X );
R «— TwigList-EnumeratéQ), L);

return R;

It is important to know that existing algorithn¥vigStackand Twig® Stackdo not
fully make use of this property. Push/pop operations together with stacks cannot effec-
tively maintain this property. We fully and effectively make use of this property. Unlike
TwigStackand Twig? Stack we mainly use lists instead of stacks. UnlikeigStack
we minimize the cost of enumerating results to the minimum (linear time), because
the merging procedure of joins is avoided. UnlikeTwig? Stack we do not need to
use complex hierarchical-stacks, and maximize the possibility to conduct sequential
scans over the lists. When generating outputs for a twig-pattern matching dquery,
by enumerating the generated lists, we do not need to use any extra memory space,
which further saves cost. Our algorithm is optimal in the sense that both time and space
complexities of our algorithm are linear w.r.t. the total number of occurrences of twig-
pattern matchings and the sizexafiL tree. As shown in our experimental studies, our
externalTwigList algorithm outperformdwig? Stackas well asTwigStack

TwigList algorithm is outlined in Algorithm 1, which takes two inputs, a query
tree Q(V, E), representing a twig-pattern matching query, andkam tree, 7. The
query tree has. nodes,{V1,Vs,---,V,}. TwigList constructs lists for alV;-typed
nodes in7 ", and sorts them following preorder. There are two main steps. First, it calls
TwigList-Constructo obtain a set of lists that compactly maintain all twig-patterns for
answering? (line 3). Second, it call§wigList-Enumeratéo obtain alln-ary tuples for
Q (line 4). In the following, we discuss the two main algorithnig/igList-Construct
and TwigList-Enumeratgein detail. For simplicity, we first concentrate on query trees,
@, where only/-edges appear. Then, we will discuss how to process a query tree with
/-edges as well as-edges.

4.1 TwiglList-ConstructAlgorithm

TwigList-Constructs outlined in Algorithm 2. We explain howwigList works using
an example of the same twig-pattern matching query= /A[/C]/B (Fig. 1 (b))
againstxmL tree7 (Fig. 1 (a)). In@, there are three type$, B, andC. A is the root
node, andB andC are leaf nodes. Accordingly, as inpu,consists of three sequences
for the three typesX4 = (a1, a2,a3), X = (b1,b2,b3,b4), andX¢c = (c1, ca, c3).
TwigList-Constructwill generate three listsl. 4, Lg and L¢, to determine all possi-
ble n-ary tuples for answering@). Here, for thisQ, everyxmL tree nodeg;, in L4
will maintain two pairs of pointers to specify the intervals for Bstyped descendants,
(startp, endp), and itsC-typed descendant&startc, endc).
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Algorithm 2 TwigList-Construct{Q, X)

Input: a query tree) with n nodes{V4,---,V,,}, and a set of sequencas a sequence i,
X, maintains a list o¥;-typedxmL nodes;
Output: all Ly, foreachl < i < n.

1: initialize stackS as empty;

2: initialize all list Ly, as empty for all; € V(Q) (The length ofLy; is initialized as 0);

3: while notall X, = 0, for1 < ¢ < n,do

4: let V, be the node such that its top element is the first following the preorder traversal

among all top elements in aK;;

5. letw be the top element iX;
6: removev from Xg;
7. toList(S, Q, reg(v));
8: for eachchild of V, in query treeR, V,,, do
9: v.starty, « length(Lv,) + 1,
10:  push(,v);

11: toList(S, Q, (0o, o0));

ProceduretoList(S, Q, )

12: while S £ O A r € reg(top(S)) do

13:  wv; < pop(9S);

14:  letw;’s type beV;

15:  for eachchild of V; in query tree, Vi, do

16: vj.endy, — length(Lv,);

17:  appendy; into list Ly, if vj.starty, < v;.endy, for everyVj’s child, Vi;

Initially, it initializes a working stackS to be empty (line 1), and create empty lists,
L4, Lg, andL¢ (line 2). Below, we uséength(Lx ) to indicate the length of the list
Lx. All the lengths of the lists are zero. In line 3-10, it repeats until all sequetes,
Xpg,andX ¢, become empty. In every iteratiohwigList-Construcselects a node from
the sequences that is the first following preorder (line 4-6). For this exafylgList-
Constructaccessiy, as, by, as, b, b3, by, ¢1, co, @andes in order, and will push them
into S.

Supposer, as andb, are pushed intd' already.a; andas’s startg andstartc
pointers will point to the ends df 5 and L¢ (length(Lp) + 1 andlength(L¢o) + 1),
respectively. Theiendp andendc will be updated later, because they are unknown
now. WhenTwigList-Constructs about to pusthus into S, it calls toList (line 7) with
its region-codereg(as). The body oftoListis from line 12 to line 17toListfinds that
b, as the top element i is not an ancestor af; and therefore pops-up from S and
append$, to L. Here,as’s startp will pointto length(Lp) + 1, becausé is not a
descendant af; andas’s B-typed descendants will come after it, if amy’s startc
will pointto L¢ (length(L¢) + 1) which is still empty. ThentoList also finds thati»
as the current top element fis not an ancestor ofs. toList does not append it into
L 4 because it does not have afiytyped descendants now, and will not have any later
(line 17). WhenTwigList-Constructs about to puslas into S after pushing into S,
toListfinds thath, is notbs's ancestor, it pops ufy, from .S and appendé; to L g.



8 Lu Qin et al.

¢ La ] La [a3] La [a321]
iy g o
a [b1b2b4 bg] [] ai [b1 b2b4b3] [01] [b1b2b4b3] [01 Ca 03]
S Lg L¢ S Lg L¢ S Ls Lc

(a) After traversal ta; (b) After traversal ta: (c) Final

Fig. 3. TwigList-Construcfor the query tre&) (Fig. 1 (b)) againskmL tree7 (Fig. 1 (a))

Fig. 3 (a) shows the stack and the listsL 4, Lg, andL¢, afterc; is pushed into
S. Fig. 3 (b) showsS and the lists aftets is pushed intd5. Whencs is pushed intd,
toListenforces:; andags to be popped up, and append to the corresponding lists. This is
the timing forag to fill in its end g andend¢ positions {(ength(Lg) andlength(Lc¢)),
respectively. Fig. 3 (c) shows the staSkand the lists after alkmML tree nodes are
pushed/popped-up into/froifl. As can be seen from Fig. 3 (c), all twig-patterns are
maintained by the lists.

In line 11, TwigList-Constructisesco, co) as the largest region code to enforce all
in stacksS to be appended into a list if possible.

Time/Space Complexity Given a twig-pattern matching query, and arxmL tree7 .
Suppose the corresponding query tt@ehasn nodesVy, Vs, - - -, V,,. The time/space
complexity of TwigList-ConstrucfAlgorithm 2) are both Qf - | X|) in the worst case,
where| X| is the total number of nodes;, in XML tree that isV;-typedl < i < n, and
d is the max degree of a node in the query t¢geNote: everyxmL tree node that is
V;-typed will be pushed/popped-up into/from the st&c&nly once. It needs at mogt
times to calculate its intervals. Therefoi@yigList-Constructs linear w.r.t.| X|.

4.2 TwiglList-Enumeraté\lgorithm

TwigList-Enumeratas outlined in Algorithm 3. It takes two input parameters, the
node query tre€) and a set of listsL, which consists of the lists obtained TawigList-
Construct TwigList-Enumeratsimply inserts alh-ary tuples as answers into a relation
R to be returned.

Continue the above example, the three lists, L g, andL, are shown in Fig. 3 (c).
Initially, start = [ag, b2, ¢1], andend = [a1, b3, ¢1] (line 2-4). Here, paifas, a;) spec-
ifies the interval for allA-typed XML tree nodes(b., b3) specifies the interval where
as's B-typed descendants exist, aid, ¢;) specifies the interval whekg’s C-typed
descendants exist. Line Biove = [as, ba, ¢1] records the current positions for out-
putting results. Then, it callsioreMatcho generate alh-ary tuples. InmoreMatchit
first inserts then-ary tuple pointed by the-elementnmove array. The termination con-
dition is specified in line 9 when there is no tuple to be generdtgdjList-Enumerate
will result (ag, bg, Cl), ((137 b47 Cl), and(ag, b3, Cl), followed by(a,l, bl7 Cl), s

Time/Space Complexity Given a twig-pattern matching quer§(V, E), as a query
tree, and arxmL tree7 . Suppose listdy,, Ly,,--- , Ly, have been constructed, the
time complexity of TwigList-Enumeratalgorithm isO(n - | R|), where| R is the total
number of twig-pattern matchings, amdis the number of nodes in query tre@,
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Algorithm 3 TwiglList-Enumeraté(Q, L)

Input: a query tree@, with n nodes{V1,--- ,V,,}; a set of lists,L, consisting of allLy;, for
1<i<n
Output: all n-ary tuples as answers f¢J;
1: letR — 0;
2: let start[1..n], end[1..n] ben-element arrays for maintaining the regions for thksts;
3: let V1 be the root node in the query trég start[1] andend[1] point to the begin and end
positions ofLy;, ;
4: initialize the otherstart[i] andend[i] for V; as the interval specified by the first element in
its parent list;
5: letmove[l..n] be an-element array whergwove[i] — start]i];
6: while moreMatcR, start, end, move) # false do;
7: return R;

Function moreMatcKR, start, end, move)

8: insert(move[l],- - - ,move[n]) as an-ary tuple intoR;

9: if Vi: moveli] = end[i] then return false;

10: selectV; such thatmoveli] < end][i], but all its descendantd/;, in the query tre&),
move[j] = end[j];

11: moveli] < moveli] + 1;

12: letw; be theV;-typed element pointed by.oveli];

13: for all V;’s descendantd/;, in query tree) do

14: resetall theistart[j], end[j], andmove[j] according to the interval specified by its parent

(rooted atv;);
15: return true;

Because in each run of functionoreMatch we will get one more matching (line 8),
and the operations below imoreMatchrequire timeO(n). The space complexity of
TwigList-Enumeratés the same foffwigList-Constructbecause it does not consume
any more memory space, other than three arsays[1..n], end[1..n], andmove[l..n].
Hence, the time complexity fofwigList is the sum of that fofwigList-Construcand
TwigList-EnumerateO(d - | X |+ n - | R|). This algorithm is optimal because it is linear
w.r.t. |R| and|X|. NoteO(n - |R|) is lower bound to output all twig-pattern matchings
of an-node query tree explicitly.

4.3 Discussions

Handling /-Edges in Query Trees|f there are/-edges in a query tre€), it needs to
have additional information to maintain the sibling information for efficiently process-
ing twig-pattern matching queries. Considet = JA[/C]/B against thexmL tree

7T (Fig. 1 (a)). Only(as, b2, ¢1) and(as, b3, c1) are the answers @’. We can simply
extend TwigList-Constructto construct lists when there ayeedges in a given query
tree. ForQ’ = JA[/C]/B, the lists constructed are shown in Fig. 4. As shown in
Fig. 4, there is no need to appeadinto list L 4, because; does not have #-typed
child when it is about to append. Whésis about to be appended infos, TwigList-
Constructknows thatb, is a sibling which shares the sametyped parent obs, a
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sibling link can be added frort, to b3. Note: someb; andc; are not in the interval

of az as shown in Fig. 4, it is because that it is unknown whether it is in the interval
of its parent when it is appended into the corresponding list. With the sibling pointers,
TwigList-Enumeratean quickly enumerate all results.

External Algorithm : When the set of listd. is too large to fit into memoryJwigList

can be simply extended to work as an external algorithm by maintaining all lists on
disk. It is because the access patterns against the lists usually focus on intervals and are
not random. We implemented an exteraligList algorithm withn 4KB-pages for a

query tree withn nodes. The externdiwigList algorithm outperformgwig? Stack

5 Performance Study

We have implemented three algorithms for processing twig-pattern matching queries:
Twig? Stack{9], our TwigList, and our external version diwigList (E-TwigList) using
C++. We choosdwig? Stackas the basis to compare, becad@dg? Stackis the most
up-to-date algorithm which outperfornTsvigStack[3] and TJFas{6]. TJFasis a fast
algorithm for processing twig-pattern matching queries with hjetdges and-edges.

Three Datasets We used both benchmark datas@tark, and two real datasetB8BLP
andTreeBank. ForXMark, we set the scaling factor to be 5.0 and generated a 582MB
XMark dataset with 77 different labels and a maximum depth of 12. For real datasets,
we use a 337MBBLP dataset which has 41 different labels and a maximum depth of 6,
and the 84MBTreeBank dataset which has 250 different labels and a maximum depth
of 36. TheDBLP dataset is wide but shallow, whereas TheeBank dataset is deep and
recursive.

All experiments were performed on a 2.8G HZ Pentium (R)4 processor PC with
1GB RAM running on Windows XP system. We mainly report processing time for
construction and enumeration usedfimig? Stack TwigList, andE-TwigList, since the
other time as loading and storing final results are the same. The buffer size used for
E-TwigListis a 4KB-page for every node in a query tree.

Twig-pattern matching queries: We conducted extensive testing, and report the results
for 15 twig-pattern matching queries (query trees) as shown in Table 1. For each of the
three datasets, we report five query trees, which have different combinatipresiges

and /-edges and different selectivities. In each group of 5 query trees, the first 2 are
selected from the queries used in [9], and the second 2 are constructed by adding some
branches into the first 2. The last is a rather complex query tree.
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[Na.me[Dataset [QueryTrees [ResultSize]
XQ1 |XMark //item[location]|/description//keyword 136, 282
XQ2 |XMark //people/ /person|.//address/zipcode]/profile/education 15, 859
XQ3 |XMark //item[location][.//mailbox/mail//emph]/description//keyword 86,533
XQ4 |XMark //people/ /person[.//address/zipcode][id]/profile[.//age]|/education 7,997
XQ5 |XMark //open_auction|.//annotation[.//person|//parlist]//bidder//increase 141,851
DQ1 [DBLP //dblp/inproceedings[title]|/author 1,205,196
DQ2 |DBLP //dblp/articlelauthor][.//title]|//year 625,991
DQ3 |DBLP //dblp/inproceedings[.//cite/label][title]/author 132, 902
DQ4 |DBLP //dblp/articlefauthor][.//title][.//url][.//ee]//year 384,474
DQ5 |DBLP //article[.//mdate][.//volume][.//cite//label]//journal 13,785
TQL |TreeBank|//S/VP//PP[.//NP/VBN] /IN 1,183
TQ2 |TreeBank|//S/VP/PP[IN]/NP/VBN 152
TQ3 |TreeBank|//S/VP//PP[.//NN][.//NP[.//CD]/VBN]/IN 381
TQ4 |TreeBank|//S[.//VP][.//NP]/VP/PP[IN]/NP/VBN 1,185
TQ5 |TreeBank|//EMPTY[.//VP/PP//NNP][.//S[.//PP//33]//VBN]/ /PP NP/ / NONE. 94,535

Table 1.A list of query trees used in the experiments
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Fig. 5. Processing Time (ms)

Fig. 5 depicts the processing time of query trees listed in Table 1 for the datasets,
XMark (Fig. 5 (a)),DBLP (Fig. 5 (b)), andTreeBank (Fig. 5 (c)). TwigList and even
E-TwigList outperform Twig? Stackin all tests. TwigList (E-TwigLisf) outperforms
Twig? Stack mainly due to the linear structure (lists) used to organize the elements
instead of complex hierarchical-stacks usedlimig® Stack Also, when enumerating
results, Twig? Stackuses a join approach which produces a lot of intermediate results,
whereas ouffwigList (E-TwigLisf) does not generate any intermediate results.

ForxMark (Fig. 5 (a)), on averagdwigListis 3-4 times andE-TwigListis 2-3 times
faster thanTwig? Stack ForDBLP (Fig. 5 (b)), on averag€lwigList is 4-8 times andE-
TwigList is 2-4 times faster thaiiwig? Stack For TreeBank (Fig. 5 (c)), TwigList and
E-TwigList outperform Twig? Stack in particular when the query tree becomes com-
plex, for exampleTQ5. Our algorithms based on linear structures (lists) replace a large
number of random accesses with sequential accesses in both memory and disk.

E-TwigList Test: We further teste-TwigList by choosing three queriesQ3, DQ3 and

TQ3, as representations of the queries aiésrk, DBLP andTreeBank datasets. Their
structures are moderately complex, and they produce a moderate number of matchings.
XQ3 has 7 nodes with a tree of depth 4 and max node degre@das 6 nodes with a

tree of depth 4 and max degree 3, a3 has 8 nodes with a tree of depth 5 and max
degree 3. The total number of 1/0Os include the 1/O cost in loading, construction and
enumeration. We vary the buffer size from 4KB to 20KB. As shown in Fig. 6(b), we
can see that the total number of 1/0Os decreases when the buffer size increases. We can
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Fig. 6. Total Processing time and 1/Os varying buffer size

also see from Fig. 6(a) that the processing time decreases when the buffer size increases,
but the effect of buffer sizes on processing times is not obvious. It concludes that only
a small buffer is needed for a node in a query tree.

6 Conclusion and Future Work

In this paper, we propose a nelwigList algorithm to compactly maintain the twig-
patterns using simple lists. The algorithm can be easily extended as an external algo-
rithm (E-TwigList). The time and space complexity of the algorithm are linear with
respect to the total number of occurrences of twig-patterns and the skaeLofree.
Our algorithm significantly outperformBwig? Stackalgorithm.

As the future work, we are planning to study the pattern matching over directed
acyclic graphs using the similar method to get a better performance.
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