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Abstract. Twig pattern matching problem has been widely studied in recent
years. Give anXML treeT . A twig-pattern matching query,Q, represented as
a query tree, is to find all the occurrences of such twig pattern inT . Previous
works likeHolisticTwig andTJFastdecomposed the twig pattern into single paths
from root to leaves, and merged all the occurrences of such path-patterns to find
the occurrences of the twig-pattern matching query,Q. Their techniques can ef-
fectively prune impossible path-patterns to avoid producing a large amount of
intermediate results. But they still need to merge path-patterns which occurs high
computational cost. Recently,Twig2Stackwas proposed to overcome this prob-
lem using hierarchical-stacks to further reduce the merging cost. But, due to the
complex hierarchical-stacksTwig2Stackused,Twig2Stackmay end up many ran-
dom accesses in memory, and need to load the wholeXML tree into memory in
the worst case. In this paper, we propose a new algorithm, calledTwigList, which
uses simple lists. Both time and space complexity of our algorithm are linear with
respect to the total number of pattern occurrences and the size ofXML tree. In
addition, our algorithm can be easily modified as an external algorithm. We con-
ducted extensive experimental studies using large benchmark and real datasets.
Our algorithm significantly outperforms the up-to-date algorithm.

1 Introduction

The Extensible Markup Language (XML ) is an emerging standard for data representa-
tion and exchange on the Internet. Pattern matching is one of the most important types
of XML queries to retrieve information from anXML document. Among many reported
studies, Zhang et al. in [1] introduced the region encoding to processXML queries and
proposed a multi-predicate merge join algorithm using inverted list. Al-Khalifa et al. in
[2] proposed a stack-based algorithm which breaks the twig query into a set of binary
components. The drawback of the early work is the large intermediate results generated
by the algorithm. Bruno et al. in [3] used a holistic twig join algorithmTwigStackto
avoid producing large intermediate results. Jiang et al. in [4] proposed anXML Region
Tree (XR-tree) which is a dynamic external memory index structure specially designed
for nestedXML data. WithXR-tree, they presented aTSGeneric+algorithm to effec-
tively skip both ancestors and descendants that do not participate in a join. Lu et al.
in [5] proposedTwigStackListto better handle twig queries with parent-child relation-
ships. Lu et al. in [6] used a different labeling scheme called extended Dewey, and
proposed aTJFastalgorithm to access only leaf elements. However, all of the above
algorithms can not avoid a large number of unnecessary path mergings as theoretically
shown in [7]. Hence, Aghili et al. in [8] proposed a binary labeling algorithm using
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the method of nearest common ancestor to reduce search space. However, this tech-
nique is efficient in the cases when the returned nodes are the leaf nodes in the twig
query. Most recently, Chen et al. in [9] proposed aTwig2Stackalgorithm which uses
hierarchical-stacks instead of enumeration of path matches.Twig2Stackoutperforms
TwigStackandTJFast. But Twig2Stackmay conduct many random accesses and may
use a large memory space due to the complexity of hierarchical-stacks it uses.

The main contribution of this paper is summarized below. We present a new algo-
rithm, calledTwigList, which is independently developed and shares similarity with
Twig2Stack[9]. Our algorithm significantly outperformsTwig2Stack. The efficiency of
our TwigList algorithm is achieved by using simple lists rather than the hierarchical-
stacks used inTwig2Stackto reduce the computational cost. In addition, because of
the simple list data structure and maximization of possible sequential scans used in
our algorithm, we extendTwigList as an external algorithm, which still outperforms
Twig2Stackusing a 582MBXMark benchmark, a 337MBDBLP dataset, and a 84MB
TreeBank dataset, as reported in our extensive experimental studies.

The remainder of this paper is organized as follows. Section 2 gives the problem of
processing twig-pattern matching queries. Section 3 discusses two existing algorithms
and outlines their problems. We give our new algorithm in Section 4. Experimental
results are presented in Section 5. Finally, Section 6 concludes the paper.

2 Twig-Pattern Matching Queries

An XML document can be modeled as a rooted, ordered, and node-labeled tree,T ,
where a node represents anXML element, and an edge represents a parent/child rela-
tionship between elements inXML . For simplicity, in this work, a label of a node is
a value that belongs to a type (tag-name). An example of anXML tree is shown in
Fig. 1 (a). In theXML tree, a node is associated with a valuexi which belongs to a type
X (denotedxi ∈ X). For example, the root node has a valuea1 that belongs to typeA.
The ordering among sibling nodes specifies a traversal order.

A twig-pattern matching query is a fragment ofXPATH queries that can be repre-
sented as a query tree,Q(V, E). Here,V = {V1, V2, · · · , Vn} is a set of nodes repre-
senting types. We letVi denote both theith typed query node inQ and the set of the
ith typed elements in theXML treeT , E is a set of edges. An edge between two typed
nodes, for example,A andD, is either associated with anXPATH axis operator// or /
to representA//D or A/D. Given anXML treeT , the former is to retrieve allA and
D typed elements that satisfy the ancestor/descendant relationships, and the latter is to
retrieve allA andD typed elements that satisfy parent/child relationships. We call the
former //-edge and the latter/-edge in short. As a special case, the root node has an
incoming//- or /-edge to represent anXPATH query,//A or /A, suppose the root node
is A-typed. The answer of an-node query tree,Q(V, E), against anXML treeT , is a
set of alln-ary tuples(v1, v2, · · · , vn) in T , for vi ∈ Vi (1 ≤ i ≤ n), that satisfy all
the structural relationships imposed byQ. Consider anXPATH Q = //A[//C]//B. The
query tree is illustrated in Fig. 1 (b). WhenQ is issued against theXML tree (Fig. 1 (a)),
the answer includes(a1, b1, c3) and(a3, b3, c1).
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Fig. 1.An XML tree (a) and a query treeQ (b)

In this paper, we focus ourselves on efficient processing twig-pattern matching
queries. For efficiently determining ancestor/descendant relationships among nodes in
an XML tree, a nodeu is encoded with a triple,(su, eu, du), wheresu andeu together
represent a region (starting/ending position), denotedreg(u), anddu represents the
level of the node in theXML tree. (The root is at level 1.) With the region encoding
(starting/ending position), a nodeu is an ancestor of a nodev iff the reg(v) ⊆ reg(u)
such thatsu < sv ≤ ev < eu, a nodeu is a parent of a nodev iff reg(v) ⊆ reg(u)
anddv = du + 1, which implies that the nodev is one level deeper than nodeu. For
example, as shown in Fig. 1 (a),b2 is a descendant ofa1, because the region ofb2, (7,8),
is contained in the region ofa1 (1, 20). Also,b2 is not a child ofa1 because the levels
for b2 anda1 are 3 and 1.

3 Two Existing Algorithms: TwigStackAnd Twig2Stack

The twig-pattern matching query was first studied by Bruno, Koudas and Srivastava in
[3]. A TwigStackalgorithm was proposed to process a twig-pattern matching query,Q,
in two steps. In the first step, in brief, aPathStackalgorithm was proposed to efficiently
process every query path in a given query tree. Consider the queryQ = //A[//C]//B
(Fig. 1 (b)). There are two query paths,Qp1 = //A//B and Qp2 = //A//C. The
PathStackalgorithm finds answers for both of them using stacks. In the second step,
TwigStackchecks if the results for all the query paths can be merged to satisfy the struc-
tural relationships imposed by the given twig-pattern matching query. ForTwigStack,
the first step can be processed efficiently, but the second step consumes much time
because it needs to process merging.

Below, in brief, we discuss the difficulties forTwigStackto reduce computational
cost for merging in the second step after introducingPathStack. Consider a query path
in the query treeQp = //V1//V2// · · · //Vn. A stack is created for every nodeVi, denoted
stack(Vi). The whole query path is processed while traversing the givenXML treeT
following the preorder. When traversing aVi-typed nodevi in XML treeT (vi ∈ Vi),
PathStackpops up nodes that are not ancestors ofvi in stack(Vi) andstack(Vi−1),
because they are no longer needed. ThenPathStackpushes nodevi into stack(Vi), iff
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stack(Vi−1) is not empty. Whenvi can be pushed intostack(Vi), there is a pointer
from vi pointing to the top element instack(Vi−1). Consider processing query path
Qp1 = //A//B againstXML treeT (Fig. 1 (a)). There are two stacksstack(A) and
stack(B). Following preorder traversal,PathStackpushesa1 anda2 into stack(A).
Whenb1 is traversed, the top element ofa2 in stack(A) is an ancestor ofb1, sob1 is
pushed intostack(B). PathStackwill report (a1, b1) and(a2, b1) as result for the query
path, because all the other elements instack(A) are ancestors of the top element. Then,
a3 is traversed, andPathStackwill pop upa2 before pushinga3 into stack(A), because
a2 is not an ancestor ofa3 and is not needed in the later processing. Similarly, whenb2 is
traversed,b1 is popped up. The merging process ensures the results satisfying the entire
structural relationships. ReconsiderQ = //A[//C]//B (Fig. 1 (b)) againstXML treeT
(Fig. 1 (a)). Here,(a3, b2) satisfiesQp1 = //A//B, (a1, c2) satisfiesQp2 = //A//C, but
the two do not jointly satisfyQ = //A[//C]//B. The cost of merging is considerably
high as processingn joins, if there aren query paths for a twig-pattern matching query.

It is worth noting thatTwigStackcannot allow the same stack, saystack(A), to
be shared by two query pathsQp1 = //A//B andQp2 = //A//C, and process twig-
pattern matching queries without the merging step. It is because the sibling relationships
cannot be easily maintained in the framework ofTwigStack, and the push/popup, that
are designed for each query path, cannot be used to control multiple paths (branches).
Due to the different timing of push/popup, some answer may be missing.

In order to avoid the high cost in the step of merging, Chen et al. in [9] proposed
a Twig2Stackalgorithm which instead uses a hierarchical-stack, denotedHSVi

, for
each node, in query treeQ, to compactly maintain all twig-patterns for a twig-pattern
matching query.

Consider a query treeQ(V, E) with n nodes (V = {V1, V2, · · · , Vn}). Twig2Stack
maintainsn hierarchical-stacksHSVi

for 1 ≤ i ≤ n. EachHSVi
maintains an ordered

sequence of stack-trees,ST1(Vi), ST2(Vi), · · · , and a stack-tree,STj(Vi), is an ordered
tree of stacks. Each stack in the stack-tree contains zero or more document elements.
The ancestor/descendant relationships are maintained by the stacks in the hierarchical-
stacks. Suppose in anXML tree,u is an ancestor ofv. If u andv have the same type,
sayVi, in Twig2Stack, they may appear in the same stack. If so,v will be pushed into
the stack beforeu is in HSVi

. If u andv have different types,Vi andVj , thenu will be
in one stack inHSVi

andv will be in one stack inHSVj
and there is a pointer from the

stack inHSVi to the stack inHSVj to represent their ancestor/descendant relationship.

Take an example of processingQ = //A[//C]//B (Fig. 1 (b)) againstXML treeT
(Fig. 1 (a)).Twig2StacktraversesT in preorder:a1, a2, b1, a3, b2, b3, b4, c1, c2, and
c3, and will push them into a special stack calleddocpath in such order. Initially,a1,
a2 andb1 are pushed into the stackdocpath in order. WhenTwig2Stack is about to
pusha3 into docpath, it finds thatb1 is not an ancestor ofa3 and therefore pops-up
b1 from docpath and pushesb1 to the hierarchical-stackHSB , and it then finds that
a2 is not an ancestor ofa3 either and therefore simply discards it (becausea2 does not
have anyC-typed descendants now, and will not have any later). WhenTwig2Stackis
about to pushb3 into docpath after pushingb2 into docpath, Twig2Stackfinds thatb2

is notb3’s ancestor, it pops upb2 from docpath and pushesb2 into HSB . Sinceb2 is not
an ancestor ofb1, there will be two single-node stack-trees inHSB . Fig. 2 (a) shows
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Fig. 2.Twig2Stackfor the query treeQ (Fig. 1 (b)) againstXML treeT (Fig. 1 (a))

thedocpath, the hierarchical-stacks afterc1 is pushed intodocpath. Fig. 2 (b) shows
thedocpath, the hierarchical-stacks,HSA andHSB andHSC , afterc2 is pushed into
docpath. Note: there are two stack-trees inHSB . Froma3 in HSA, there is a pointer
pointing to a subtree inHSB indicating that it is an ancestor ofb2, b3 andb4; also there
is a pointer toHSC indicating thata3 is an ancestorc1. Fig. 2 (c) shows the hierarchical-
stacks after allXML tree nodes are pushed/popped-up into/fromdocpath. As can be
seen from Fig. 2 (c), all twig-patterns are maintained by the stacks in the hierarchical-
stacks. After the hierarchical-stacks are constructed,Twig2Stackenumerates the results
in a bottom-top manner. For example, fora1, Twig2Stackenumerates the stacks, and
conduct Cartesian-product betweena1 and{b1, b2, b3, b4} and{c1, c2, c3}.

As shown in [9],Twig2Stackis a linear-time (w.r.t. the number of nodes ofT ) al-
gorithm to construct the hierarchical-stacks, and is a linear-time (w.r.t. the total number
of matchings) enumeration algorithm based on intermediate structures maintained in
the hierarchical-stacks. But there are also some problems inTwig2Stack. First, the way
of maintaining ancestor/descendant relationships across the hierarchical-stacks is too
complex, which results in a large number of random memory accesses and therefore
increases the processing time. Second,TwigStackneeds to maintain a large number of
stacks. In the worst case, it needs to load the wholeXML tree into memory.

4 A New Algorithm: TwigList

We have developed a new algorithmTwigList for processing twig-pattern matching
queries. The main difference between ourTwigList algorithm andTwig2Stackis that
we do not need to maintain complicated hierarchical-stacks for nodes in a query treeQ.
Instead of maintaining a hierarchical-stack for a node,Vi, in the query tree,TwigList
simply maintains a list,LVi

. The list is used based on the following remark.

Property 1. ConsiderA//B against anXML treeT . If anA-typed node is an ancestor of
a set ofB-typed nodes inXML treeT : (1) It must be able to specify a minimal interval
for theA-typed node to cover all suchB-typed nodes; (2) It must be the case that there
does not exist anyB-typed node in the interval that is not a descendant of theA-typed
node.
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Algorithm 1 TwigList (Q, T )
Input: a query treeQ with n nodes{V1, · · · , Vn}, and anXML treeT ;
Output: all n-ary tuples as answers forQ;

1: let Xi be a sequence ofVi-typedXML tree nodes sorted in preorder, for all1 ≤ i ≤ n;
2: let X be the set of allXi for 1 ≤ i ≤ n;
3: obtain a set of listsL = {LVi , LV2 , · · ·LVn} by callingTwigList-Construct(Q, X);
4: R ← TwigList-Enumerate(Q, L);
5: return R;

It is important to know that existing algorithmsTwigStackandTwig2Stackdo not
fully make use of this property. Push/pop operations together with stacks cannot effec-
tively maintain this property. We fully and effectively make use of this property. Unlike
TwigStackandTwig2Stack, we mainly use lists instead of stacks. UnlikeTwigStack,
we minimize the cost of enumerating results to the minimum (linear time), because
the merging procedure ofn joins is avoided. UnlikeTwig2Stack, we do not need to
use complex hierarchical-stacks, and maximize the possibility to conduct sequential
scans over the lists. When generating outputs for a twig-pattern matching query,Q,
by enumerating the generated lists, we do not need to use any extra memory space,
which further saves cost. Our algorithm is optimal in the sense that both time and space
complexities of our algorithm are linear w.r.t. the total number of occurrences of twig-
pattern matchings and the size ofXML tree. As shown in our experimental studies, our
externalTwigList algorithm outperformsTwig2Stackas well asTwigStack.

TwigList algorithm is outlined in Algorithm 1, which takes two inputs, a query
treeQ(V, E), representing a twig-pattern matching query, and anXML tree,T . The
query tree hasn nodes,{V1, V2, · · · , Vn}. TwigList constructs lists for allVi-typed
nodes inT , and sorts them following preorder. There are two main steps. First, it calls
TwigList-Constructto obtain a set of lists that compactly maintain all twig-patterns for
answeringQ (line 3). Second, it callsTwigList-Enumerateto obtain alln-ary tuples for
Q (line 4). In the following, we discuss the two main algorithms,TwigList-Construct
andTwigList-Enumerate, in detail. For simplicity, we first concentrate on query trees,
Q, where only//-edges appear. Then, we will discuss how to process a query tree with
//-edges as well as/-edges.

4.1 TwigList-ConstructAlgorithm

TwigList-Constructis outlined in Algorithm 2. We explain howTwigList works using
an example of the same twig-pattern matching queryQ = //A[//C]//B (Fig. 1 (b))
againstXML treeT (Fig. 1 (a)). InQ, there are three typesA, B, andC. A is the root
node, andB andC are leaf nodes. Accordingly, as input,X consists of three sequences
for the three types,XA = 〈a1, a2, a3〉, XB = 〈b1, b2, b3, b4〉, andXC = 〈c1, c2, c3〉.
TwigList-Constructwill generate three lists,LA, LB andLC , to determine all possi-
ble n-ary tuples for answeringQ. Here, for thisQ, every XML tree node,ai, in LA

will maintain two pairs of pointers to specify the intervals for itsB-typed descendants,
(startB , endB), and itsC-typed descendants,(startC , endC).
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Algorithm 2 TwigList-Construct(Q,X)
Input: a query treeQ with n nodes{V1, · · · , Vn}, and a set of sequencesX, a sequence inX,
Xi, maintains a list ofVi-typedXML nodes;
Output: all LVi for each1 ≤ i ≤ n.

1: initialize stackS as empty;
2: initialize all list LVi as empty for allVi ∈ V (Q) (The length ofLVi is initialized as 0);
3: while not allXq = ∅, for 1 ≤ q ≤ n, do
4: let Vq be the node such that its top element is the first following the preorder traversal

among all top elements in allXi;
5: let v be the top element inXq;
6: removev from Xq;
7: toList(S, Q, reg(v));
8: for eachchild of Vq in query treeQ, Vp, do
9: v.startVp ← length(LVp) + 1;

10: push(S, v);
11: toList(S, Q, (∞,∞));

ProceduretoList(S, Q, r)

12: while S 6= ∅ ∧ r 6⊆ reg(top(S)) do
13: vj ← pop(S);
14: let vj ’s type beVj ;
15: for eachchild of Vj in query treeQ, Vk, do
16: vj .endVk ← length(LVk );
17: appendvj into list LVj if vj .startVk ≤ vj .endVk for everyVj ’s child, Vk;

Initially, it initializes a working stackS to be empty (line 1), and create empty lists,
LA, LB , andLC (line 2). Below, we uselength(LX) to indicate the length of the list
LX . All the lengths of the lists are zero. In line 3-10, it repeats until all sequences,XA,
XB , andXC , become empty. In every iteration,TwigList-Constructselects a node from
the sequences that is the first following preorder (line 4-6). For this example,TwigList-
Constructaccessa1, a2, b1, a3, b2, b3, b4, c1, c2, andc3 in order, and will push them
into S.

Supposea1, a2 andb1 are pushed intoS already.a1 anda2’s startB andstartC
pointers will point to the ends ofLB andLC (length(LB) + 1 andlength(LC) + 1),
respectively. TheirendB andendC will be updated later, because they are unknown
now. WhenTwigList-Constructis about to pusha3 into S, it calls toList (line 7) with
its region-codereg(a3). The body oftoList is from line 12 to line 17.toList finds that
b1 as the top element inS is not an ancestor ofa3 and therefore pops-upb1 from S and
appendsb1 to LB . Here,a3’s startB will point to length(LB) + 1, becauseb1 is not a
descendant ofa3 anda3’s B-typed descendants will come after it, if any.a3’s startC
will point to LC (length(LC) + 1) which is still empty. Then,toList also finds thata2

as the current top element inS is not an ancestor ofa3. toList does not append it into
LA because it does not have anyC-typed descendants now, and will not have any later
(line 17). WhenTwigList-Constructis about to pushb3 into S after pushingb2 into S,
toList finds thatb2 is notb3’s ancestor, it pops upb2 from S and appendsb2 to LB .
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Fig. 3.TwigList-Constructfor the query treeQ (Fig. 1 (b)) againstXML treeT (Fig. 1 (a))

Fig. 3 (a) shows the stackS and the lists,LA, LB , andLC , afterc1 is pushed into
S. Fig. 3 (b) showsS and the lists afterc2 is pushed intoS. Whenc2 is pushed intoS,
toList enforcesc1 anda3 to be popped up, and append to the corresponding lists. This is
the timing fora3 to fill in its endB andendC positions (length(LB) andlength(LC)),
respectively. Fig. 3 (c) shows the stackS and the lists after allXML tree nodes are
pushed/popped-up into/fromS. As can be seen from Fig. 3 (c), all twig-patterns are
maintained by the lists.

In line 11,TwigList-Constructuses(∞,∞) as the largest region code to enforce all
in stackS to be appended into a list if possible.

Time/Space Complexity: Given a twig-pattern matching query,Q, and anXML treeT .
Suppose the corresponding query tree,Q, hasn nodes,V1, V2, · · · , Vn. The time/space
complexity ofTwigList-Construct(Algorithm 2) are both O(d · |X|) in the worst case,
where|X| is the total number of nodes,vi, in XML tree that isVi-typed1 ≤ i ≤ n, and
d is the max degree of a node in the query treeQ. Note: everyXML tree node that is
Vi-typed will be pushed/popped-up into/from the stackS only once. It needs at mostd
times to calculate its intervals. Therefore,TwigList-Constructis linear w.r.t.|X|.

4.2 TwigList-EnumerateAlgorithm

TwigList-Enumerateis outlined in Algorithm 3. It takes two input parameters, then-
node query treeQ and a set of lists,L, which consists of the lists obtained inTwigList-
Construct. TwigList-Enumeratesimply inserts alln-ary tuples as answers into a relation
R to be returned.

Continue the above example, the three lists,LA, LB , andLC , are shown in Fig. 3 (c).
Initially, start = [a3, b2, c1], andend = [a1, b3, c1] (line 2-4). Here, pair(a3, a1) spec-
ifies the interval for allA-typedXML tree nodes.(b2, b3) specifies the interval where
a3’s B-typed descendants exist, and(c1, c1) specifies the interval wherea3’s C-typed
descendants exist. Line 5,move = [a3, b2, c1] records the current positions for out-
putting results. Then, it callsmoreMatchto generate alln-ary tuples. InmoreMatch, it
first inserts then-ary tuple pointed by then-elementmove array. The termination con-
dition is specified in line 9 when there is no tuple to be generated.TwigList-Enumerate
will result (a3, b2, c1), (a3, b4, c1), and(a3, b3, c1), followed by(a1, b1, c1), · · · .
Time/Space Complexity: Given a twig-pattern matching query,Q(V, E), as a query
tree, and anXML treeT . Suppose listsLV1 , LV2 , · · · , LVn

have been constructed, the
time complexity ofTwigList-Enumeratealgorithm isO(n · |R|), where|R| is the total
number of twig-pattern matchings, andn is the number of nodes in query tree,Q.
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Algorithm 3 TwigList-Enumerate(Q,L)
Input: a query tree,Q, with n nodes{V1, · · · , Vn}; a set of lists,L, consisting of allLVi , for
1 ≤ i ≤ n;
Output: all n-ary tuples as answers forQ;

1: let R ← ∅;
2: let start[1..n], end[1..n] ben-element arrays for maintaining the regions for then lists;
3: let V1 be the root node in the query treeQ; start[1] andend[1] point to the begin and end

positions ofLV1 ;
4: initialize the otherstart[i] andend[i] for Vi as the interval specified by the first element in

its parent list;
5: let move[1..n] be an-element array wheremove[i] ← start[i];
6: while moreMatch(R, start, end, move) 6= false do;
7: return R;

Function moreMatch(R, start, end, move)

8: insert(move[1], · · · , move[n]) as an-ary tuple intoR;
9: if ∀i: move[i] = end[i] then return false;

10: selectVi such thatmove[i] < end[i], but all its descendants,Vj , in the query treeQ,
move[j] = end[j];

11: move[i] ← move[i] + 1;
12: let vi be theVi-typed element pointed bymove[i];
13: for all Vi’s descendants,Vj , in query treeQ do
14: reset all theirstart[j], end[j], andmove[j] according to the interval specified by its parent

(rooted atvi);
15: return true;

Because in each run of functionmoreMatch, we will get one more matching (line 8),
and the operations below inmoreMatchrequire timeO(n). The space complexity of
TwigList-Enumerateis the same forTwigList-Construct, because it does not consume
any more memory space, other than three arraysstart[1..n], end[1..n], andmove[1..n].
Hence, the time complexity forTwigList is the sum of that forTwigList-Constructand
TwigList-Enumerate, O(d · |X|+n · |R|). This algorithm is optimal because it is linear
w.r.t. |R| and|X|. NoteO(n · |R|) is lower bound to output all twig-pattern matchings
of an-node query tree explicitly.

4.3 Discussions

Handling /-Edges in Query Trees: If there are/-edges in a query tree,Q, it needs to
have additional information to maintain the sibling information for efficiently process-
ing twig-pattern matching queries. ConsiderQ′ = //A[//C]/B against theXML tree
T (Fig. 1 (a)). Only(a3, b2, c1) and(a3, b3, c1) are the answers ofQ′. We can simply
extendTwigList-Constructto construct lists when there are/-edges in a given query
tree. ForQ′ = //A[//C]/B, the lists constructed are shown in Fig. 4. As shown in
Fig. 4, there is no need to appenda1 into list LA, becausea1 does not have aB-typed
child when it is about to append. Whenb3 is about to be appended intoLB , TwigList-
Constructknows thatb2 is a sibling which shares the sameA-typed parent ofb3, a
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Fig. 4.TwigList-Constructfor Q′ = //A[//C]/B againstXML treeT (Fig. 1 (a))

sibling link can be added fromb2 to b3. Note: somebi andcj are not in the interval
of a3 as shown in Fig. 4, it is because that it is unknown whether it is in the interval
of its parent when it is appended into the corresponding list. With the sibling pointers,
TwigList-Enumeratecan quickly enumerate all results.

External Algorithm : When the set of listsL is too large to fit into memory,TwigList
can be simply extended to work as an external algorithm by maintaining all lists on
disk. It is because the access patterns against the lists usually focus on intervals and are
not random. We implemented an externalTwigList algorithm withn 4KB-pages for a
query tree withn nodes. The externalTwigList algorithm outperformsTwig2Stack.

5 Performance Study

We have implemented three algorithms for processing twig-pattern matching queries:
Twig2Stack[9], our TwigList, and our external version ofTwigList (E-TwigList) using
C++. We chooseTwig2Stackas the basis to compare, becauseTwig2Stackis the most
up-to-date algorithm which outperformsTwigStack[3] andTJFast[6]. TJFastis a fast
algorithm for processing twig-pattern matching queries with both//-edges and/-edges.

Three Datasets: We used both benchmark dataset,XMark, and two real datasets,DBLP
andTreeBank. ForXMark, we set the scaling factor to be 5.0 and generated a 582MB
XMark dataset with 77 different labels and a maximum depth of 12. For real datasets,
we use a 337MBDBLP dataset which has 41 different labels and a maximum depth of 6,
and the 84MBTreeBank dataset which has 250 different labels and a maximum depth
of 36. TheDBLP dataset is wide but shallow, whereas theTreeBank dataset is deep and
recursive.

All experiments were performed on a 2.8G HZ Pentium (R)4 processor PC with
1GB RAM running on Windows XP system. We mainly report processing time for
construction and enumeration used inTwig2Stack, TwigList, andE-TwigList, since the
other time as loading and storing final results are the same. The buffer size used for
E-TwigList is a 4KB-page for every node in a query tree.

Twig-pattern matching queries: We conducted extensive testing, and report the results
for 15 twig-pattern matching queries (query trees) as shown in Table 1. For each of the
three datasets, we report five query trees, which have different combinations of/-edges
and//-edges and different selectivities. In each group of 5 query trees, the first 2 are
selected from the queries used in [9], and the second 2 are constructed by adding some
branches into the first 2. The last is a rather complex query tree.
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Name Dataset QueryTrees ResultSize

XQ1 XMark //item[location]/description//keyword 136, 282
XQ2 XMark //people//person[.//address/zipcode]/profile/education 15, 859
XQ3 XMark //item[location][.//mailbox/mail//emph]/description//keyword 86, 533
XQ4 XMark //people//person[.//address/zipcode][id]/profile[.//age]/education 7, 997
XQ5 XMark //open auction[.//annotation[.//person]//parlist]//bidder//increase 141, 851
DQ1 DBLP //dblp/inproceedings[title]/author 1, 205, 196
DQ2 DBLP //dblp/article[author][.//title]//year 625, 991
DQ3 DBLP //dblp/inproceedings[.//cite/label][title]/author 132, 902
DQ4 DBLP //dblp/article[author][.//title][.//url][.//ee]//year 384, 474
DQ5 DBLP //article[.//mdate][.//volume][.//cite//label]//journal 13, 785
TQ1 TreeBank //S/VP//PP[.//NP/VBN]/IN 1, 183
TQ2 TreeBank //S/VP/PP[IN]/NP/VBN 152
TQ3 TreeBank //S/VP//PP[.//NN][.//NP[.//CD]/VBN]/IN 381
TQ4 TreeBank //S[.//VP][.//NP]/VP/PP[IN]/NP/VBN 1, 185
TQ5 TreeBank //EMPTY[.//VP/PP//NNP][.//S[.//PP//JJ]//VBN]//PP/NP// NONE 94, 535

Table 1.A list of query trees used in the experiments
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Fig. 5.Processing Time (ms)

Fig. 5 depicts the processing time of query trees listed in Table 1 for the datasets,
XMark (Fig. 5 (a)),DBLP (Fig. 5 (b)), andTreeBank (Fig. 5 (c)).TwigList and even
E-TwigList outperformTwig2Stack in all tests.TwigList (E-TwigList) outperforms
Twig2Stack, mainly due to the linear structure (lists) used to organize the elements
instead of complex hierarchical-stacks used inTwig2Stack. Also, when enumerating
results,Twig2Stackuses a join approach which produces a lot of intermediate results,
whereas ourTwigList (E-TwigList) does not generate any intermediate results.

ForXMark (Fig. 5 (a)), on average,TwigList is 3-4 times andE-TwigList is 2-3 times
faster thanTwig2Stack. ForDBLP (Fig. 5 (b)), on average,TwigList is 4-8 times andE-
TwigList is 2-4 times faster thanTwig2Stack. ForTreeBank (Fig. 5 (c)),TwigList and
E-TwigList outperformTwig2Stack, in particular when the query tree becomes com-
plex, for example,TQ5. Our algorithms based on linear structures (lists) replace a large
number of random accesses with sequential accesses in both memory and disk.

E-TwigList Test: We further testE-TwigList by choosing three queries,XQ3, DQ3 and
TQ3, as representations of the queries overXMark, DBLP andTreeBank datasets. Their
structures are moderately complex, and they produce a moderate number of matchings.
XQ3 has 7 nodes with a tree of depth 4 and max node degree 3,DQ3 has 6 nodes with a
tree of depth 4 and max degree 3, andTQ3 has 8 nodes with a tree of depth 5 and max
degree 3. The total number of I/Os include the I/O cost in loading, construction and
enumeration. We vary the buffer size from 4KB to 20KB. As shown in Fig. 6(b), we
can see that the total number of I/Os decreases when the buffer size increases. We can
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Fig. 6.Total Processing time and I/Os varying buffer size

also see from Fig. 6(a) that the processing time decreases when the buffer size increases,
but the effect of buffer sizes on processing times is not obvious. It concludes that only
a small buffer is needed for a node in a query tree.

6 Conclusion and Future Work

In this paper, we propose a newTwigList algorithm to compactly maintain the twig-
patterns using simple lists. The algorithm can be easily extended as an external algo-
rithm (E-TwigList). The time and space complexity of the algorithm are linear with
respect to the total number of occurrences of twig-patterns and the size ofXML tree.
Our algorithm significantly outperformsTwig2Stackalgorithm.

As the future work, we are planning to study the pattern matching over directed
acyclic graphs using the similar method to get a better performance.
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